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Abstract. In this paper we study the uniqueness of entire functions concerning their difference operator
and derivatives. The idea of entire and meromorphic functions relies heavily on this direction. Rubel and
Yang considered the uniqueness of entire function and its derivative and proved that if f(z) and f'(2)
share two values a, b counting multilicities then f(z) = f’(z). Later, Li Ping and Yang improved the result
given by Rubel and Yang and proved that if f(z) is a non-constant entire function and a, b are two finite
distinct complex values and if f(z) and f ) (#) share a counting multiplicities and b ignoring multiplicities
then f(z) = f*)(2). In recent years, the value distribution of meromorphic functions of finite order with
respect to difference analogue has become a subject of interest. By replacing finite distinct complex values
by polynomials, we prove the following result: Let A f(z) be trancendental entire functions of finite order,
k > 0 be integer and P, and P, be two polynomials. If Af(z) and %) share P, CM and share P, IM,
then Af = f () " A non-trivial proof of this result uses Nevanlinna’s value distribution theory.
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1. Introduction and Main Results

The reader is presumed to be familiar with the fundamental notations and conclusions
of Nevanlinna’s value distribution theory of meromorphic functions [1, 2|. S(r, f) means that
S(r,f) = o(T(r,f)) as r — oo outside of a possible exceptional set of finite logarithamic
measure, and

log+N(r l) m(r L) N(r l)
T ' f — . ’ a _ ) f

Af) = rlggo Sup logr > (P f) rlggo inf T(r, f) T—00 T(r, f)
stand for the exponents of convergence of zero sequence of f and the deficiency of f at the
point a, respectively. For a nonconstant meromorphic function h, we denote by T'(r, h) the
Nevanlinna characteristic of h and by S(r, h) any quantity satisfying S(r,h) = o(T(r,h)), as r
runs to infinity outside of a set E C (0, +00) of finite linear measure. We say that h is a small
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function of f, if T'(r,h) = S(r, f). In the sequel, we denote by I a set of infinite linear measure
not necessarily the same in all its occurrences.

We say that f and g share the value a IM (ignoring multiplicities), if f and g have the
same qa point. If f and g have the same a point with the same multiplicities, then we say f, g
share the value a CM (counting multiplicities).

DEFINITION 1 [3]. Let k be a nonnegative integer or infinity. For a € CU {oo}, we denote
by Ex(a; f) the set of all a points of f(z) where an a point of mulplicity m is counted m times
if m <k and k+ 1 times if m > k. If Ex(a; f) = Er(a;g), then we say that f, g share the
value a with weight k.

We write f and g share (a, k) to mean that f, g share the value a with weight k.

Rubel and Yang Chung-Chun [4] considered the uniqueness of an entire function and its
derivative. They proved the following.

Theorem 1. Let f(z) be a non-constant entire function, let a,b be two finite distinct
values. If f(z) and f’(z) share a,b CM, then f(z) = f'(2).

Li Ping and Yang Chung-Chun [5] improved Theorem 1 and proved.

Theorem 2. Let f(z) be a non-constant entire function, and let a,b be two finite distinct
complex values. If f(z) and f*)(z) share a CM, and share b IM. Then f(z) = f®)(z).

The value distribution of meromorphic functions of finite order with respect to difference
analogue has become a subject of some interests, see [6-16].

Theorem 3 [17]|. Suppose that f(z) and g(z) are nonconstact meromorphic functions. If
f.g share 0, 1, co CM and N (r, %) +N(r, f) < (d+o0(1))T(r, f) forr € I and r € oo, where d
is a positive number satisfying 0 < d < %, which I C (0,400) is a subset of infinite linear
measure, then f =g or f.g = 1.

Theorem 4 [4]. Let f be a nonconstant entire function. If f shares two distinct finite
values CM with f’, then f = f’.

More results on uniqueness of f’ with its n-th derivative f(™) were obtained by several
authors (see [18-20]). In view of the progress on the difference analogues of classical Nevanlinna
theory of meromorphic functions [21, 22|, it is quite natural to investigate the uniqueness
problems of meromorphic functions and their difference operators (see [23-26]).

EXAMPLE 1. Let f(z) = e, where A # 0 is a constant. Then f(*) = A¥eA* and Af =
f(z+1) = f(2) = (e* —1)e?%. Clearly, A(f) and f*) share 0 CM and oo IM, and that pu = 1.
We can choose A such that e —1 # A*, and so f' # A(f).

Theorem 5 [27|. Let f(z) be a trancendental entite function of finite order, let n # 0 be a
finite complex number, n > 1, k > 0 be two integers and let a, b be two distinct finite complex
values. If f(z) and (Agf(z))(k) share a CM and share b IM, then f(z) = (Agf(z))(k).

Lemma 1 [9]. Let Af be a nonconstant meromorphic function of finite order, let n # 0
be a finite complex number. Then

A
(220 g,
for all r outside of a possible exceptional set E with finite logarithmic measure.

Lemma 2 |28, Lemma 4.3]. Let A f be a nonconstant meromorphic function. Suppose that
the polynomials P;, j = 0,1,...,q, ¢ > p, and let P(Af) = ag(Af)P + a1 (Af)P 1+ ... +ap
(ap # 0) is a polynomial of degree p with constant coefficient a;j, j = 0,1,...,p. Then

m (T P(Af)(Af)
(Af=P)(Af—P)...(Af - P)

) = S(r, Af).
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Lemma 3. Let Af and Ag be two non constant entire functions, and let Py, P, be two
polynomials. If

H= AF - Ay =0
C(Af-P)(AfF—P) (Ag—P)(Ag—P)

and Af and Ag share Py CM, and share P, IM, then either

2T(r,Af) < N (r, ﬁ) +N (r, ﬁ) + S(r,Af)

or

Af =Ag.
< Integrating H which leads to
Ag — P2 CAf — P2

Ag—Pl_ Af—Pf

where C is a nonzero constant.

If C =1, then Af = Ag. If C' # 1, then from above, we have

P - P (C—l)Af—CPQ—i—Pl
Ag—Pl Af—Pl

and

T(r,Af)=T(r,Ag) + S(r,Af) + S(r,Ag).

Obviously, % # a and % % b. It follows that N <7“, %) = 0. Then by the

Af=~e=
Second Fundamental Theorem,

2T(7"7 Af) = N(V", Af) +W <7”, ﬁ) +N <7°, ﬁ) +W (7"', W)
C
+S(T5Af) gN <r’ﬁ> +N (Ta#> +S(T’Af)’

that is

Lemma 4. Let Af be a transcendental entire function of finite order, k be positive
integer, let P, be a nonzero complex value or constant. If Af and f®*) share P, CM, and
N(r7 ﬁ) = S(r,Af), then one of the following cases must occur:

o f®) = HeP, where p is a polynomial, and H # 0 is a small function of eP.

o T'(r,eP) = S(r,Af).

< Since Af is a transcendental entire function of finite order, Af and f*) share P; CM,
then there is a polynomial p such that

Af— P =eP(fB)) — PP, (1)
Set g = f). It follows by (1) that

g=(9¢")) — (Pre")®. (2)
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Then we rewrite (2) as

P, eP) (k)
1+( 1) = DeP, (3)
g
where ®)
ge”
p- ) ()
ge
Note that N <7°, (f)%) =N (7", é) = S(r, f), then by Lemma 1 we have
B (ger)®)
T(r,D)=T (r, Ager )
Next we discuss two cases.
Case 1: e7? — D # 0. Rewrite (3) as
geP(e7? — D) = (PreP)®). (5)
When D =0, (5) implies
g = HeP. (6)

Here H # 0 is a small function of eP.
When D # 0, it follows from (5) that N (r,ﬁ) = S(r,f). Then use the Second
Fundamental Theorem to e” we can obtain

T(r,e?) =T(r,e ?)+0(1) < N(r,e’)+N (r, eép) +N (r, >+O(1) = S(r,Af).

1
eP—D

Case 2: e P—D = 0. It implies that T'(r,e?) = T'(r,e ?)+0O(1) = S(r, Af), a contradiction.
From above discussions, we get T'(r,eP) = S(r,Af). >

Theorem 6. Let Af(z) be a transcendental entire functions of finite order, k be integer
such that k > 0 and let P, and P, be two polynomials. If Af(z) and f(k) share P CM and
share Py IM, then Af = f).

QIf Af = f®)_ there is nothing to prove. Solve Af % f*). Since Af is a transcenedental
entire function of finite order, Af and f*) share P, CM, then we get

()~
A

Af—Plz ) (7)

where @) is a polynomial.
Since Af and f*) share P, CM and share P, IM, then by second fundamental theorem
and Lemma 1 we have

a0 <N (s g ) <N () A

_ 1 — 1 1
<N (r, 7Af—P2> —i—N(r, 7f(k) —P2> <N (r, 7Af—f(k)> + S(r,Af)
ST(rAf = f®) + S, Af) <m(r,Af — fB) + S(r,Af)

<m(r,Af) —i—m(r, 1— %) +S(r,Af) <T(r, f)+ S(r, f),
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_ 1 .
According to (7) and (8) we have
1
= _ k) -
T, AN =T(: A = £O) + 58N <N (g ) #5080 )
and
(k) — P, 1
Q) _ Q) _ f 1) I
T(r,e ) m(r,e ) m <r, Af—P1> <m <7“, Af—P1> + S(r,Af). (10)
Then it follows from (7) and (9) that
1 e?—1 1
- )= - - Q _
w(rarm) = (nargm) < (rapmgm) e <) )
< T(r,e?) + S(r,Af).
Then by (10) and (11)
1
Q) = S
T(r,e ) m(r, Af—P1> + S(r,Af). (12)
On the other hand, (1) can be rewritten as
M -AF g
= — 1
which implies
— — 1
< = @ : 14
N<T’Af—P2>\N<T’eQ—1> T(r,e?) + S(r,Af) (14)

and then

N(r, Af1—P2> :T(r,eQ) + S(r,Af).

Set
(Af)(Af = fF®)
(Af = P)(Af — )

o=
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and
fk+1) (Af _ f(k))
O P (7~ By
Easy to know that ¢ is an entire function by Lemma 1 and Lemma 2 we have
(Af)(Af = W)
(Af = P)(Af = P)

<m <7~, : (A)(A]) > m <r, - &> +S(r.Af) = S(r,Af),

- 18
w( (18)

T(r,¢) =m(r,¢) =m (T, ) +5(r,Af)

Af—P)(Af - P) Af

that is
T(r,¢) =S(r,Af). (19)
Obiously Let d = Py — k(P) — P»), k # 0, by Lemmas 1 and 2, we obtain

n(vap) s (a7 a0 m) (F77)

(o) oo (4205 25)) o (5 et

and
() = (r o BDAT 1)
Af-d (AT P)(Af —Po)(Af —d)

) (21)
1=/ (AF)(Af = f®) )
<m<ra Af )+m(T’(Af—Pl)(Af—Pz)(Af—d) +S(r,Af) = S(r,Af).
Set (f)(k—i—l) (AfY
PSR- F) (BT PO(AT - P (22)

We discuss two cases
Case 1: ¢ = 0. Integrating both side of (22) which leads to

_ (k) _
Af-P Cf P27 (23)
Af-rn  f-p

where ¢ is a non zero constant. Then by Lemma 3 we see that

— 1 — 1
2T(r,Af) < N <7", m) +N <7“, m) + S(r,Af), (24)

which contradicts with (8).
Case 2: ¢ Z 0. By (9), (19) and (22) we can obtain
o(Af — 1)

m(r,Af):m(r,Af—f(k))—i—S(r,Af):m<r, p

—m <r, v > ¢> + SR Af) < T <r, ﬁ) +S(rAf) (25)

<T(rp— §) + T(r.6) + S, A) < T(r ) + N (

) + S(r,Af)

1
,m> + S(r,Af).
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On the other hand
(k+1) (A £ _ f(R)
T(r,¢) =T Al G
(f®) — P)(f*) — PO))
B f(k+1 (Af f (k) )
(26)
fk+1) Af — k)
= ( =) T\
< 1 +S(r,Af) =N ! + S(r,Af)
<m T’Af—Pl T, = T’Af—Pg T, .
Hence combining (25) and (26) we obtain
— 1
T(r,Af) <2N (r,—— JAS). 2
(nAf) <2 (1 g ) + 504 (27)
Next, case 2 is divided into two subcases.
Subcase 2.1. P; = 0. Then by (7) and Lemma 1 we get
Q I ~ s a
m(r,e ) =m T’,A—f = S(r,Af). (28)
Then by (16), (27) and (28) we can have T'(r, Af) = S(r, Af) a contradiction.
Subcase 2.2. P, = 0. Then by (16), (27) and (28) and Lemma 1 we get
T(r,Af) < _t +N(r ! + S(r,Af)
r, SR UZ RS Af — Pl f(k) r, (29)
1 — 1
_— (k)
<m (r, f(k)> +N< f(k)> + 8 AN < (T(r 1)) + S(r,Af).
From the fact that
T(r, f™) <T(r,Af) +S(r, Af), (30)
which follows from (29) that
T(r, Af) =T (r, fV) + S(r, Af), (31)

By second Nevanlinna Fundamental theorem, Lemma 1, (8) and (31) we have

2T (r, Af) < 2T (r, f®) + S(r, Af)

_ 1 — 1 — 1
<N<T’ f<k>—P1> +N(’”’W> +N<T’ f<k>—d> TS Af)

— 1 1 1 1
<N<T’Af—P1>+N< Af) T<T’f("“>—d>_m<r’f(’“)—d>+5(r’Af)

<2T(r,Af) —m <r,ﬁ> + S(r,Af).
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Thus
1

m (r, m) = S(r,Af). (32)

From the First Fundamental Theorem, Lemma 1, (20) to (21), (31), (32) and Af is a
transcendental entire function of finite order, we obtain

Af—d Af d
m <r, 7f("“) —d) <m <r, 7}0(@ —d> +m <r, 7f("“) —d) + S(r,Af)

Af—d Af—d
<T <’I“, 7]0(]6) —d) — N <’I“, 7]0(]6) —d) + S(r,Af)

(k) _ (k) _
:m(r,f 7 d)—l—N(r,f 7 d)—N(r,if(lﬁ{d)-i-S(ﬁAf)

1 1 1 1
gN(T,A—f> —N(T,m) +S(T’,Af) :T<T,A—f> —T(T,m) +S(’I",Af)
=T(r,A) = T(r, f®) + S(r,Af) = S(r,Af).

Thus, we get

(r =5 = stran. (53)

It’s easy to see that N(r,v¢) = S(r,Af) and ((12)) can be rewritten as

H—w<ﬁw“>+ﬁ%“1[f—d _q_
k) — g

Ll R T B ST (k)

Then by (33) and (34) we can get

T(r, ) = m(r,¢) + N(r, ) = S(r, Af). (35)
By (7), (25) and (35) we get

N (r, ﬁ) = S(r,Af). (36)
Moreover, by (7), (31) and (36), we have
m(r,ﬁ) = S(r,Af), (37)
which implies
W(r,i> :m<r,;> <m<r,i> = S(r,Af). (38)
Af Af—P [0

Then by (7) we obtain T'(r, Af) = S(r,Af), a contradiction. So, by (12), (16), (27) and the

Second Fundamental Theorem of Nevanlinna, we can get

1 1
T(r,Af) <2m (’I“, m) +S(r,Af) < 2m <r, W) +S(r,Af)

(M’H+N0Afﬂ>

<27 (r, f<k>)_2N< f(lk)> +S(r,Af) < )
—i—ﬁ(r,L)—QN( f(k>+S(V"Af (r,Af) — <7f(1 )—i—Srf)
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which deduces that .
It follows from the second theorem of Nevanlinna that
_ 1
(k)
T(r, ") gN( >0 > —i—N( >0 —P1> + S(r,Af)
— 1
- (k)
<N <r, 0 P1> +8(r Af) ST(r, ) + 5(r, Af),
which implies that
— 1
(k)) — - -
T(r,f ) N(r, f(k)—P1> + S(r,Af). (40)
Similarly
— 1
(k)y —
7, %) = () + 8. AD (a1)
Then, by (27), we get
T(r,Af) =21 (r, f®) + S(r, Af). (42)
By (25) and (26) we have
T(r,¢) = T(r, fV) + 5(r. Af). (43)
When case 1 occurs, we apply Lemma 4 and obtain
F* = Het, (44)
Here H # 0 is a small function of e'. Rewrite (16) as
IS = PYAS =P = AN = P) (19 — ) .
(Af = P)(Af = P) (f®) = 1) (f® — Py) '
Combining (27) with (44) we get
5
X = fEAS = PO)AS = P) = Af(fB = P) (f) = Py) = ie™, (46)
i=0
and 5
= (Af = P)(Af = P) = AL (fP = P) (P = Py) = e, (47)
j=0

where 0; and ; are small functions of el, 85 # 0 and g Z 0.

If X and Y are two mutually prime polynomials in e, then we can get T'(r, ¢) = 6T (r, ')+

S(r,Af). It follows from (16), (41)—(43) that T'(r,Af), a contradiction

If X and Y are not two mutually prime polynomials in ef, it’s easy to see that the degree

of Y is large than X. Then submitting (38) into (12) 1mphes
H=5

and
t=Pz+ Ps,

where P; # 0 and P, are polynomials.

(48)

(49)
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According to (45), (48), (49) and by simple calculation, we must have

C
¢ = TE_py (50)
where C' is a non-zero constant. Put (44) into (16) we have
(k) _ r(k+1) _ p _AF
c((H™—f 1) _ f (51)

(fB) = P)(f®) —P)  (Af = P)(Af—P)

We claim that f*) = fk+1),

Otherwise, combining (22), (44) and (51) we can get T'(r,e') = S(r,Af). It follows
from (16) and (27) that T'(r,Af) = S(r,Af), a contradiction. Hence, it is a easy work to
verify that

p=1 (52)

and
f®) = Pyt~ = Ae?, (53)

where A is a nonzero constant and furthermore

Af = Ae** — P Ae” + P. (54)
Then rewrite (27) as
Af—f®

Put (49), (52)—(54) into (55) and a direct calculation deduces
A=P=el" =1. (56)
It follows from (1), (28), (52) and (56) that
H= P —1)"=1. (57)

Since Af and f*) share P, IM and (41), (42) and (56) we get

e — Pe* + (P — 1) = (* — 1)%, (58)
i. e,
P =2. (59)
It follows from (57) that
¥ = (—=2)7V" 1 1. (60)

But we cannot get (2) from (60), a contradiction. When case 2 occurs we know that
m(r,et) = m(r,e?)+0(1) = S(r, Af). Then by (16) and (27) we deduce T(r, Af) = S(r, Af)

a contradiction. >
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BiragukaBka3ckuii MaTeMaTHIeCKHE XKy PHAJT
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EJAVMHCTBEHHOCTD IIEJIBIX OYHKINAX OTHOCUTEJIBHO
X PASHOCTHBIX OITEPATOPOB U ITPOU3BO/IHBIX

Payixemsapu C.!, IluGakycap B.2

! BanraopcKuii TEXHOIOrMIECK il HHCTHTY'T,
WMunusa, Banramop-560004, Bummsermsapanypa, BacaBanarymu;
2 IIpesmmenTckuii yausepcurer, VHkeHepHast KO,
WMunusa, Banramop-560 064, Urarannypa, Pagxanakynre, Eraxanka
E-mail: rajeshwari.s@presidencyuniversity.in, rajeshwaripreetham@gmail. com;
sheeba.buzurg@gmail.com

AnHoTtanus. B 910it crarbe MBI M3y4YaeM €MHCTBEHHOCTDb HEIBIX (DYHKINH OTHOCHTEIBHO WX Pa3HOCT-
HOTO OIlepaTopa U IPOM3BOAHLIX. [IpencraBieHue O HENBIX U MEPOMOP(MHBIX (DYHKIUIX CHIBHO 3aBHCUT OT
9TOro HampasjeHus. PyGenp u JHr paccMOTpenn eIMHCTBEHHOCTD I1ejIoN (DYHKIUMHN U ee IPOU3BOJHBIX; OHH
Jokazasm, uto ecau f(z) u f'(2) pasmendior qBa 3Havenus a, b ¢ ygerom KpaTHocreit, To f(z) = f'(z). lozxe
JIu IMusr u dur yayamunnun pesynsrar Py6ens u fdura: ecnu f(z) — HenocrosiHHAs Iesiast HGYHKIU, & @ U b —
JIBa, KOHEUHBIX PA3INIHBIX KOMILJIEKCHBIX 3Hadenusi, u ecu f(z) u f*)(z) pasmensior a ¢ ygerom kpaTHOCTEiH
u b — Ges yuera xparnocreii, o f(z) = f*)(2). B mociennme rogpl IposIBISETCs 3HAUMTEILHBI HHTEPEC
K pacCIpesieIeHnI0 3Ha9eHnil MepoMOPGHBIX (DYHKINH KOHEYHOIO MOPSIKA OTHOCHTEIBHO PAa3HOCTHOIO aHa-
Jiora. 3aMeHUB Pa3J/InYHble KOHEYHbIE KOMIIJIEKCHBIE 3HAYEHNS] MHOTOYJIEHAMHE, yCTAHABJINBAETCS CJIELYOMIAN
pesysbrar: nyctb A f(z) — TpaHCueHIeHTHAs esas (HbyHKIUs KOHEIHOrO Topsaaka, k > 0 — mesoe 9ucio, a
Py u P, — nBa muorowiena; eciu Af(z) u f (®) paspensior Py ¢ ydgeroM KparHocTell u Py urmopupys Kpar-
wocru, 10 Af = f*). Herpusmnanabroe J10Ka3aTeIbCTBA STONO PE3YIIHTATA UCIIOIB3YeT TEOPHIO PACIPEIETEHHS
snadennit HeBanjnuuor.

KiroueBble CJIOBa: Pa3HOCTHBIN ONEPATOp, pasfe/isieMble 3HAYEHHs!, KOHEYHBINH MOPSIOK, €JINHCTBEH-
HOCTb, T1ieJiasi (PYHKIHS, MHOTOYJIEHBI.
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